PMT

C	Juestic	on	Answer	Marks	Guida	nce
1	(i)		$\frac{1}{9}$	2	isw conversion to decimal M1 for 9 or for 3^{-2} or for $\frac{1}{3}$ Except M0 for 9 from 27/3 or $\sqrt[3]{27}$	ie M1 for evidence of $(\sqrt[3]{27})^2$ or $1/(\sqrt[3]{27})$ found correctly
				[2]		
1	(ii)		$2a^2c^{-4}$ or $\frac{2a^2}{c^4}$ as final answer	3	B1 for each element; must be multiplied if B0, allow SC1 for $64a^6c^3$ obtained from numerator or for all elements correct but added	
				[3]		
2			midpt M of AB = $\left(\frac{1+6}{2}, \frac{5-1}{2}\right)$ oe isw soi subst of their midpt into $y = 2x - 5$ and attempting to evaluate	M1 M1	condone lack of brackets; accept in the form x = 7/2 oe, $y = 2$ oe eg 2 × their 3.5 – 5 = their result accept 2 = 2 × 3.5 – 5	<u>alt methods</u> : allow 2 nd M1 for finding correct eqn of AB as $y = -\frac{6x}{5} + \frac{31}{5}$ oe <u>and</u> attempting to solve as simult eqn with $y = 2x - 5$ for x or y or allow M1 for finding in unsimplified form the eqn of the line through their midpt with gradient 2 and A1 for showing it is $y = 2x - 5$, so Yes
			all work correct and 'Yes' oe	A1 [3]		

	Juestio	n	Answer	Marks	Guida	nce
3	(i)		graph of shape with vertices at $(-2, -3)$, $(0, 0)$ and $(2, -4)$	2	M1 for 2 vertices correct	condone lines unruled; condone just missing vertex: ¹ / ₄ grid square tolerance
				[2]		
3	(ii)		graph of shape with vertices at $(1, -1)$, $(3, 2)$ and $(5, -2)$	2	M1 for 2 vertices correct or for shape with vertices at $(-5, -1)$, $(-3, 2)$ and $(-1, -2)$	condone lines unruled; condone just missing vertex: ¼ grid square tolerance
				[2]		
4	(i)		$61 - 28\sqrt{3}$	3	B2 for 61 or B1 for 49 + 12 found in expansion (may be in a grid)	
					and B1 for $-28\sqrt{3}$	
					if B0, allow M1 for at least three terms correct in $49-14\sqrt{3}-14\sqrt{3}+12$	
					the correct answer obtained then spoilt earns SC2 only	
				[3]		
4	(ii)		$4\sqrt{3}$	2	M1 for $\sqrt{50} = 5\sqrt{2}$ or $\sqrt{300} = 10\sqrt{3}$ or	
					$20\sqrt{300} = 200\sqrt{3}$ or $\sqrt{48} = 2\sqrt{12}$ seen	
				[2]		

Question	Answer	Marks	Guidance		
5	3a + 12 [= ac + 5f]	M1	for expanding brackets correctly	annotate this question if partially correct	
	3a - ac = 5f - 12 or ft	M1	for collecting <i>a</i> terms on one side, remaining terms on other	ft only if two <i>a</i> terms	
	a(3-c) = 5f - 12 or ft	M1	for factorising <i>a</i> terms; may be implied by final answer	ft only if two <i>a</i> terms, needing factorising may be earned before 2^{nd} M1	
	$[a=]\frac{5f-12}{3-c}$ oe or ft as final answer	M1	for division by their two-term factor; for all 4 marks to be earned, work must be fully correct		
		[4]			
6	(3x+1)(x+3)	M1	or $3(x + 1/3)(x + 3)$		
			or for $-1/3$ and -3 found as endpoints eg by use of formula		
	x < -3 [or]	A1			
	x > -1/3 oe	A1	mark final answers;		
			allow only A1 for $-3 > x > -1/3$ oe as final answer or for $x \le -3$ and $x \ge -1/3$	A0 for combinations with only one part correct eg $-3 > x < -1/3$, though this would earn M1 if not already awarded	
			if M0, allow SC1 for sketch of parabola the right way up with their solns ft their endpoints		
		[3]			

(Question		Answer	Marks	Guida	nnce
7			70 000 www	4	throughout, condone xs included eg $(2x)^4$	annotate this question if partially correct
						allow 4 for 70 $000x^4$ www;
						may also include other terms in expansion. Allow marks even if wrong term selected; mark the coefficient of x^4
					M3 for $35 \times 5^3 \times 2^4$ oe	may be unsimplified, but do not allow 35 in factorial form unless evaluated later
					or M2 for two of these elements multiplied	or for all three elements seen together (eg in table) but not multiplied
					or M1 for 35 oe or for 1 7 21 35 35 21 7 1 row of Pascal's triangle seen	
				[4]		

PMT

June 2	2014
--------	------

Q	Juestion	Answer	Marks	Guida	nce
8		use of <i>f</i> (2)	M1	2 substituted in $f(x)$ or $f(2) = 42$ seen or correct division of $4x^3 + kx + 6$ by $x - 2$ as far as obtaining $4x^2 + 8x + (k + 16)$ oe [may have $4x^2 + 8x + 18$]	
		$4 \times 2^3 + 2k + 6 = 42$	M1	or $6 + 2(k + 16) = 42$ oe or finding (usually after division) that the constant term is 36 and then working with the <i>x</i> term to find <i>k</i> eg $kx + 16x = 18x$	
		<i>k</i> = 2	A1		
		[x =] -1	A1	as their answer, not just a trial;	accept with no working since it can be found by inspection
				A0 for just $f(-1) = 0$ with no further statement	
				A0 if confusion between roots and factors in final statement eg ' $x + 1$ is a root', even if they also state $x = -1$	
			[4]		

	Juestio	n	Answer	Marks	Guida	nce
9	(i)		$3n^2 + 6n + 5 $ isw	B2	M1 for a correct expansion of at least one of $(n + 1)^2$ and $(n + 2)^2$	
				[2]		
9	(ii)	(odd numbers with valid explanation	B2	marks dep on 9(i) correct or starting again	accept a full valid argument using odd and even from starting again
					for B2 must see at least odd × odd = odd [for $3n^2$] (or when <i>n</i> is odd, $[3]n^2$ is odd) and odd [+ even] + odd = even soi, condone lack of odd × even = even for 6 <i>n</i> ; condone no consideration of <i>n</i> being even or B2 for deductive argument such as: 6 <i>n</i> is always even [and 5 is odd] so $3n^2$ must be odd so <i>n</i> is odd B1 for odd numbers with a correct partial explanation or a partially correct argument for odd numbers but with conclusion positive odd numbers or conclusion negative odd numbers	Ignore numerical trials or examples in this part – only a generalised argument can gain credit
					B0 for just a few trials and conclusion	
				[2]		

	Question		Answer	Marks	Guidance		
10	(i)		(7,0)	1 [1]	accept $x = 7$, $y = 0$	condone 7, 0	
10	(ii)		$\sqrt{13}$	2	M1 for Pythagoras used correctly eg $[r^2 =] 3^2 + 2^2$ or for subst A or their B in	annotate this question if partially correct	
					$(x-4)^2 + (y-2)^2 [= r^2]$ or B1 for $[r =] \pm \sqrt{13}$	allow recovery if some confusion between squares and roots but correct answer found	
			$(x-4)^2 + (y-2)^2 = 13$ or ft their evaluated r^2 , isw	2	M1 for one side correct, as part of an equation with x and y terms	do not accept $(\sqrt{13})^2$ instead of 13; allow M1 for LHS for $(x-4)^2 + (y-2)^2 = r^2$ (or worse, $(x-4)^2 + (y-2)^2 = r$) (may be seen in attempt to find radius)	
				[4]			
10	(iii)		(7, 4)	2	B1 each coord accept $x = 7, y = 4$	condone 7, 4	
					if B0, then M1 for a vector or coordinates approach such as '3 along and 2 up' to get from A to C oe or M1 for $\frac{x_D + 1}{2} = 4$ and $\frac{y_D + 0}{2} = 2$	or M1 for longer method, finding the equation of the line CD as $y = 2/3 (x - 1)$ oe <u>and</u> then attempting to find intn with their circle	
				[2]	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$		

PMT

Mark Scheme

June 2	2014
--------	------

C	Juestic	on	Answer	Marks	Guidance	
10	(iv)		grad tgt = $-3/2$ oe	M2	correctly obtained or ft their D if used	annotate this question if partially correct may use AD, CD or AC
					M1 for grad AD = $\frac{4-0}{7-1}$ oe isw or 2/3 oe seen or used in this part or for their grad tgt = -1/ their grad AD	NB grad AD etc may have been found in part (iii); allow marks if used in this part – mark the copy of part (iii) that appears below the image for part (iv)
			y - their 4 = their (-3/2) (x - their 7)	M1	or subst (7, 4) into $y = \text{their} (-3/2) x + b$	
					M0 if grad AD oe used or if a wrong gradient appears with no previous working	
			y = -1.5x + 14.5 oe isw	A1	must be in form $y = ax + b$	condone $y = \frac{-3x + 29}{2}$
				[4]		condone $y = -1.5x + b$ and $b = 14.5$ oe

June	2014
------	------

Question		n	Answer		Guidance	
11	(i)		<i>x</i> = 4	B1		
			(4, -3)	B1	or $x = 4, y = -3$	condone 4, –3
				[2]		
11	(ii)		(0, 13) isw	1	or [when $x = 0$], $y = 13$ isw	annotate this question if partially correct
					0 for just (13, 0) or (k , 13) where $k \neq 0$	
			[when $y = 0$,] $(x - 4)^2 = 3$	M1	or $x^2 - 8x + 13 = 0$]	may be implied by correct value(s) for <i>x</i> found
						allow M1 for $y = x^2 - 8x + 13$ only if they go on to find values for x as if y were 0
			$[x =]4 \pm \sqrt{3} \text{ or } \frac{8 \pm \sqrt{12}}{2} \text{ isw}$	A2	need not go on to give coordinate form	
			2		A1 for one root correct	
				[4]		
11	(iii)		replacement of x in their eqn by $(x - 2)$	M1	may be simplified; eg $[y =] (x - 6)^2 - 3$	condone omission of ' $y =$ ' for M1, but
					or allow M1 for $(x - 6 - \sqrt{3})(x - 6 + \sqrt{3})$ [=0 or y]	must be present in final line for A1
			completion to given answer $y = x^2 - 12x + 33$, showing at least one correct interim step	A1	cao; condone using $f(x - 2)$ in place of y	
				[2]		

PMT

Mark Scheme

June	2014
------	------

	Question	Answer	Marks	Guid	Guidance	
11	(iv)	$x^{2} - 12x + 33 = 8 - 2x$ or $(x - 6)^{2} - 3 = 8 - 2x$	M1	for equating curve and line; correct eqns only; or for attempt to subst $(8 - y)/2$ for x in $y = x^2 - 12x + 33$	annotate this question if partially correct	
		$x^2 - 10x + 25 = 0$	M1	for rearrangement to zero, condoning one error such as omission of $= 0$ '		
		$(x-5)^2 = 0$	A1	or showing $b^2 = 4ac$	allow $\frac{10 \pm \sqrt{0}}{2}$ or if $b^2 - 4ac = 0$ is not used explicitly A0 for $(x - 5)^2 = y$	
		x = 5 www [so just one point of contact]	A1	may be part of coordinates $(5, k)$	allow recovery from $(x-5)^2 = y$	
		point of contact at $(5, -2)$	A1	dependent on previous A1 earned; allow for $y = -2$ found		
		<u>alt. method</u>	or		examiners: use one mark scheme or the other, to the benefit of the candidate if both methods attempted, but do not use a mixture of the schemes	
		for curve, $y' = 2x - 12$	M1			
		2x - 12 = -2	M1	for equating their y' to -2		
		x = 5, and y shown to be -2 using eqn to curve	A1			
		tgt is $y + 2 = -2(x - 5)$	A1			
		deriving $y = 8 - 2x$	A1		condone no further interim step if all working in this part is correct so far	
			[5]			

	Question		Answer	Marks	Guidance	
12	(i)		y = (x + 5)(x + 2)(2x - 3) or y = 2(x + 5)(x + 2)(x - 3/2)	2	M1 for $y = (x + 5)(x + 2)(x - 3/2)$ or (x + 5)(x + 2)(2x - 3) with no equation or (x + 5)(x + 2)(2x - 3) = 0 but M0 for $y = (x + 5)(x + 2)(2x - 3) - 30$ or (x + 5)(x + 2)(2x - 3) = 30 etc	allow 'f(x) =' instead of 'y = ' ignore further work towards (ii) but do not award marks for (i) in (ii)
				[2]		
12	(ii)		correct expansion of a pair of their linear two- term factors ft isw	M1	ft their factors from (i); need not be simplified; may be seen in a grid	allow only first M1 for expansion if their (i) has an extra -30 etc
			correct expansion of the correct linear and quadratic factors and completion to given answer $y = 2x^3 + 11x^2 - x - 30$	M1	must be working for this step before given answer or for direct expansion of all three factors, allow M2 for	do not award 2^{nd} mark if only had ($x - 3/2$) in (i) and suddenly doubles RHS at this stage
					$2x^{3} + 10x^{2} + 4x^{2} - 3x^{2} + 20x - 15x - 6x - 30$ oe (M1 if one error) or M1M0 for a correct direct expansion of	condone omission of ' y =' or inclusion of '= 0' for this second mark (some cands have already lost a mark for that in (i))
					(x + 5)(x + 2)(x - 3/2) condone lack of brackets if used as if they were there	allow marks if this work has been done in part (i) – mark the copy of part (i) that appears below the image for part (ii)
				[2]		

June	2014
------	------

Question		Answer	Marks	Guidance	
12	(iii)	ruled line drawn through (-2, 0) and (0, 10) and long enough to intersect curve at least twice	B1	tolerance half a small square on grid at $(-2, 0)$ and $(0, 10)$	insert BP on spare copy of graph if not used, to indicate seen – this is included as part of image, so scroll down to see it
		-5.3 to -5.4 and 1.8 to 1.9	B2	B1 for one correct ignore the solution -2 but allow B1 for both values correct but one extra or for wrong 'coordinate' form such as (1.8, -5.3)	accept in coordinate form ignoring any y coordinates given;
			[3]		
12	(iv)	$2x^3 + 11x^2 - x - 30 = 5x + 10$	M1	for equating curve and line; correct eqns only	annotate this question if partially correct
		$2x^3 + 11x^2 - 6x - 40 \ [= 0]$	M1	for rearrangement to zero, condoning one error	
		division by $(x + 2)$ and correctly obtaining $2x^2 + 7x - 20$	M1	or showing that $(x + 2)(2x^2 + 7x - 20) = 2x^3 + 11x^2 - 6x - 40$, with supporting working	
		substitution into quadratic formula or for completing the square used as far as	M1	condone one error eg <i>a</i> used as 1 not 2, or one error in the formula, using given	
		$x + \frac{7}{4}^{2} = \frac{209}{16}$ oe		$2x^2 + 7x - 20 = 0$	
		$[x=]\frac{-7\pm\sqrt{209}}{4}$ oe isw	A1	dependent only on 4 th M1	
			[5]		